Recently the deep learning has shown its advantage in representation learning and clustering for time series data. Despite the considerable progress, the existing deep time series clustering approaches mostly seek to train the deep neural network by some instance reconstruction based or cluster distribution based objective, which, however, lack the ability to exploit the sample-wise (or augmentation-wise) contrastive information or even the higher-level (e.g., cluster-level) contrastiveness for learning discriminative and clustering-friendly representations. In light of this, this paper presents a deep temporal contrastive clustering (DTCC) approach, which for the first time, to our knowledge, incorporates the contrastive learning paradigm into the deep time series clustering research. Specifically, with two parallel views generated from the original time series and their augmentations, we utilize two identical auto-encoders to learn the corresponding representations, and in the meantime perform the cluster distribution learning by incorporating a k-means objective. Further, two levels of contrastive learning are simultaneously enforced to capture the instance-level and cluster-level contrastive information, respectively. With the reconstruction loss of the auto-encoder, the cluster distribution loss, and the two levels of contrastive losses jointly optimized, the network architecture is trained in a self-supervised manner and the clustering result can thereby be obtained. Experiments on a variety of time series datasets demonstrate the superiority of our DTCC approach over the state-of-the-art.
translated by 谷歌翻译
Instruction tuning, a new learning paradigm that fine-tunes pre-trained language models on tasks specified through instructions, has shown promising zero-shot performance on various natural language processing tasks. However, it's still not explored for vision and multimodal tasks. In this work, we introduce MultiInstruct, the first multimodal instruction tuning benchmark dataset that consists of 47 diverse multimodal tasks covering 11 broad categories. Each task is designed at least with 5,000 instances (input-out pairs) from existing open-source datasets and 5 expert-written instructions. We take OFA as the base pre-trained model for multimodal instruction tuning, and to improve its performance, we explore multiple transfer learning strategies to leverage the large-scale Natural Instructions dataset. Experimental results demonstrate its strong zero-shot performance on various unseen multimodal tasks and the benefit of transfer learning from text-only instructions. We also design a new evaluation metric: Sensitivity, to evaluate how sensitive the model is to the variety of instructions. Our results indicate that the model is less sensitive to the varying instructions after finetuning on a diverse set of tasks and instructions for each task.
translated by 谷歌翻译
由于经过验证的2D检测技术的适用性,大多数当前点云检测器都广泛采用了鸟类视图(BEV)。但是,现有方法通过简单地沿高度尺寸折叠的体素或点特征来获得BEV特征,从而导致3D空间信息的重丢失。为了减轻信息丢失,我们提出了一个基于多级特征降低降低策略的新颖点云检测网络,称为MDRNET。在MDRNET中,空间感知的维度降低(SDR)旨在在体素至BEV特征转换过程中动态关注对象的宝贵部分。此外,提出了多级空间残差(MSR),以融合BEV特征图中的多级空间信息。关于Nuscenes的广泛实验表明,该提出的方法的表现优于最新方法。该代码将在出版时提供。
translated by 谷歌翻译
任意为导向的对象检测(AOOD)在遥感方案中的图像理解起着重要作用。现有的AOOD方法面临歧义和高成本的挑战。为此,提出了由粗粒角分类(CAC)和细粒角回归(FAR)组成的多透明角度表示(MGAR)方法。具体而言,设计的CAC避免了通过离散角编码(DAE)避免角度预测的歧义,并通过使DAE的粒度变形来降低复杂性。基于CAC,FAR的开发是为了优化角度预测,成本比狭窄的DAE粒度要低得多。此外,与IOU指导的自适应重新加权机制相交,旨在提高角度预测的准确性(IFL)。在几个公共遥感数据集上进行了广泛的实验,这证明了拟议的MGAR的有效性。此外,对嵌入式设备进行的实验表明,拟议的MGAR也对轻型部署也很友好。
translated by 谷歌翻译
来自单眼图像的3D对象检测是计算机视觉的具有挑战性且长期存在的问题。为了从不同的角度组合信息而没有麻烦的2D实例跟踪,最近的方法倾向于通过在空间中密集的常规3D网格进行采样,这是效率低下的多视图。在本文中,我们试图通过提出可学习的关键点采样方法来改善多视图特征聚合,该方法将伪表面点散布在3D空间中,以保持数据稀疏性。然后使用多视图几何约束和视觉特征增强的分散点来推断场景中的对象位置和形状。为了明确地弥补单帧和模型多视图几何形状的局限性,我们进一步提出了一个表面滤波器模块以抑制噪声。实验结果表明,就3D检测而言,我们的方法的性能明显优于以前的作品(在某些类别的扫描仪上改善了0.1 AP)。该代码将公开可用。
translated by 谷歌翻译
本地图像功能匹配,旨在识别图像对的识别和相应的相似区域,是计算机视觉中的重要概念。大多数现有的图像匹配方法遵循一对一的分配原则,并采用共同最近的邻居来确保跨图像之间本地特征之间的独特对应关系。但是,来自不同条件的图像可能会容纳大规模变化或观点多样性,以便一对一的分配可能在密集匹配中导致模棱两可或丢失的表示形式。在本文中,我们介绍了一种新颖的无探测器本地特征匹配方法Adamatcher,该方法首先通过轻巧的特征交互模块与密集的特征相关联,并估算了配对图像的可见面积,然后执行贴片级多到 - 一个分配可以预测匹配建议,并最终根据一对一的完善模块进行完善。广泛的实验表明,Adamatcher的表现优于固体基线,并在许多下游任务上实现最先进的结果。此外,多对一分配和一对一的完善模块可以用作其他匹配方法(例如Superglue)的改进网络,以进一步提高其性能。代码将在出版时提供。
translated by 谷歌翻译
实体集扩展(ESE)是一项有价值的任务,旨在找到给定种子实体描述的目标语义类别的实体。由于其发现知识的能力,各种NLP和下游应用程序都受益于ESE。尽管现有的引导方法取得了巨大进展,但其中大多数仍然依赖手动预定义的上下文模式。预定义的上下文模式的不可忽略的缺点是,它们不能灵活地推广到各种语义类别,我们将这种现象称为“语义敏感性”。为了解决这个问题,我们设计了一个上下文模式生成模块,该模块利用自回归语言模型(例如GPT-2)自动为实体生成高质量的上下文模式。此外,我们提出了GAPA,这是一种新型ESE框架,利用上述生成的模式扩展目标实体。对三个广泛使用的数据集进行了广泛的实验和详细分析,证明了我们方法的有效性。我们实验的所有代码都将用于可重复性。
translated by 谷歌翻译
具有大尺度图像文本对的视觉预训练(VLP)在各个领域都表现出卓越的性能。但是,Internet上的图像文本对共存通常缺乏明确的对齐信息,这对于VLP来说是次优的。建议采用现成的对象检测器来利用其他图像标签信息。但是,对象检测器是耗时的,只能识别预定义的对象类别,从而限制了模型容量。受到观察的启发,即文本包含不完整的细粒图像信息,我们介绍了Ideas,该想法代表通过在线多标签识别VLP来增加文本多样性。想法表明,可以在VLP期间共同优化从文本中提取的图像标签的多标签学习。此外,想法可以在线识别有价值的图像标签,以提供更明确的文本监督。全面的实验表明,想法可以显着提高多个下游数据集上的性能,并具有较小的额外计算成本。
translated by 谷歌翻译
我们开发了一个通用框架,统一了几种基于梯度的随机优化方法,用于在集中式和分布式场景中,用于经验风险最小化问题。该框架取决于引入的增强图的引入,该图形由对样品进行建模和边缘建模设备设备间通信和设备内随机梯度计算。通过正确设计增强图的拓扑结构,我们能够作为特殊情况恢复为著名的本地-SGD和DSGD算法,并提供了统一的方差还原(VR)和梯度跟踪(GT)方法(例如Saga) ,本地-SVRG和GT-SAGA。我们还提供了统一的收敛分析,以依靠适当的结构化lyapunov函数,以实现平滑和(强烈的)凸目标,并且获得的速率可以恢复许多现有算法的最著名结果。速率结果进一步表明,VR和GT方法可以有效地消除设备内部和跨设备内的数据异质性,从而使算法与最佳解决方案的确切收敛性。数值实验证实了本文中的发现。
translated by 谷歌翻译
我们的面部皮肤呈现出细微的色彩变化,称为远程光绘画(RPPG)信号,我们可以从中提取受试者的心率。最近,提出了许多有关RPPG信号提取的深度学习方法和相关数据集。但是,由于耗时血液流过我们的身体和其他因素,标签波(例如BVP信号)在某些数据集中具有实际RPPG信号的不确定延迟,这导致难以训练网络的训练,这些网络直接预测了RPPG波。在本文中,通过分析RPPG信号和标签波的节奏和周期性的共同特征,我们提出了一组包裹这些网络的训练方法,以便在在数据集中频繁地延迟数据的情况下进行训练时可以保持有效的效率。与其他无延迟RPPG提取方法相比,获得更精确和健壮的心率预测结果。
translated by 谷歌翻译